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1. INTRODUCTION

Nitror'ethane, CH3-NO 2, has been the subject of several studies which concerned

themsdlves with the rotational properties of the methyl group of this molecule when in the

solid-state (Trevino and Rymes 1980; Alefeld et al. 1982; Cavagnat et al. 1985; Cavagnat and

Pesquer 1986). The six-fold barrier to rotation of the methyl group about the C-N bond in gas-

phase nitromethane has been measured as 0.006 kcal/mol by microwave spectroscopy

(Tannenbaum et al. 1954; Tannenbaum, Myers, and Gwinn 1956); the small energy value of

this barrier is due to a cancellation of intramolecular interactions which results in a minimal

residual intramolecular interaction. In the crystalline phase, however, the activation energy for

rotation of the methyl group has been measured as 0.234 kcal/mol (Trevino and Rymes

1980), which suggests that the rotational motion of the methyl group is dominated by

intermolecular interactions. Although the molecule is not completely symmetric in the crystal,

it is not so distorted as to introduce significant intramolecular interactions into the rotational

potential. This study also showed that rotational diffusion of the methyl group occurs by

jumps of 1200 about the C-N bond axis. X-ray and neutron diffraction determinations of the

crystal structure of nitromethane (Trevino, Prince, and Hubbard 1980) show that all methyl

groups are equivalent by symmetry and therefore have the same environment. This implies

that the internal rotations of all methyl groups are described by a single potential. Therefore,

the rotational potential must have three-fold symmetry with respect to a rotation of the methyl

group about the C-N bond.

Detailed properties of the rotational potential are reflected in inelastic neutron scattering

measurements of many of the torsional energy levels of both the fully protonated and

deuterated molecule at 4.2 K and at pressures up to 0.48 GPa (Trevino and Rymes 1980;

Alefeld et al. 1982; Cavagnat et al. 1985). Each triply degenerate energy level is split into two

tunneling states due to the overlap of the wave functions in the adjacent wells. The amount of

splitting is extremely sensitive to the details of the angular dependence of the potential in the

region at which the levels exist. The energies at which the levels exist are also dependent on

the moment of inertia of the rotating group and can be changed by isotopic substitution of

deuterium for hydrogen. The measurements of the tunneling splitting of the ground state and

the average position of the first two excited torsional states in each of the two isotopic
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samples, as well as the moderate pressure dependence of these levels, have resulted in the

formulation of a reliable rotational potential energy function (Cavagnat et al. 1985),

V(8) = V3 /2[1 - Cos(30)] + V612[1 - Cos(60 + 5)), (1)

where e denotes the orientation of the methyl group relative to the heavy atom frame of the

nitromethane molecule in the geometry obtained at 4.2 K. We have arbitrarily defined the

equilibrium orientation of the methyl group as 0 = 00. Although the form of this potential

shows dependence on an intramolecular coordinate, 0, the source of the interactions, which

can be described by Equation 1, are predominately intermolecular (Trevino and Rymes 1980;

Tannenbaum et al. 1954; Tannenbaum, Myers, and Gwinn 1956). The phenomenological

parameters for the potential energy function in Equation 1 which reproduce the spectroscopic

measurements are listed in Table 1, and the shape of the potential using these parameters is

shown in Figure 1.

The typical form of potential energy functions used in the description of intermolecular

interactions are simple functions of interatomic distances. Because it has been determined

that the rotational potential in Figure 1 is a result of intermolecular interactions, and assuming

that these interactions can be approximated as pairwise additive between atoms of

neighboring molecules, it should be possible to describe V(0) with simple interatomic functions

V(O) = E, v[r,,(0)] (2)

where V(0) is the rotational potential (Figure 1) as a function of the orientation of the methyl

group of the molecule about the C-N bond, and vlr,,) is the interatomic potential as a function

of the separation between the ih hydrogen (i = 1, 2, or 3) of the molecule and the jth atom on

a neighboring molecule. We have noted the dependence of r,, on 0 in Equation 2 to remind

the reader that the interatomic distances between hydrogen atoms and atoms of neighboring

molecules are functions of the orientation of the methyl group. There have been previous

attempts to formulate pairwise additive interatomic potential energy functions which satisfy

Equation 2, with limited success (Cavagnat et al. 1985; Cavagnat and Pesquer 1986). The

first attempt (Cavagnat et al. 1985) assumed that the source of the rotational potential was
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Table 1. Parameters for Potential Energy Functions

Equation 1

V3 (eV) 0.0255

V6 (eV) -0.0155

5 (degrees) 30.0000

Equation 14

e (eV) 0.01284000

a (A) 2.33722580

a1 (eV) -0.07714200

b, (A2 ) 3.63285690

re 1 (A) 2.68356980

a2 (eV) 0.03722530

b2 (A-2) 2.81809700

re 2 (A) 3.37513107

r.,(A) 6.50000000

Sr (A) 0.00100000

due to the interaction between the methyl hydrogens and their neighboring oxygens only. A

Lennard-Jones potential

v(r) = e-[(a/r)" - (a/r)f] (3)

with £ = 0.283 eV and a = 2.18 A was assumed and the calculation of Equation 2 was carried

out within the mean field-like approximation; i.e., the calculation of %q0) is carried out by

rotating the methyl group about the C-N bond without changing the position of the neighbors.

This effort produced a KO) which has the qualitative features of the potential in Figure 1.

Of aqual importance, the pressure dependence of V(O) for pressures up to 0.48 GPa and

T = 4.2 K was well reproduced. Another calculation in which all interatomic interactions were

included produce qualitatively similar results (Cavagnat and Pesquer 1986). The latter

investigators argue that the V3Cos(3e) term in Equation 1 is due to the H-H interactions and

the V6Cos(60 + 8) term is due to the H-O and H-N interactions. Both studies indicate that the
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H-O intermolecular interaction is principally responsible for the compound shape of the

rotational potential, in particular for the "bump" near the bottom of the well. The shape of V(e)

is essential for the explanation of the rotational level scheme measured with inelastic neutron

scattering and for its pressure dependence up to 0.48 GPa at 4.2 K (Trevino and Rymes

1980; Cavagnat et al. 1985).

Both of the previous calculations of V1e) using only intermolecular potential energy

functions (Cavagnat et al. 1985; Cavagnat and Pesquer 1986), however, have not been

consistent with the crystal structure of nitromethane. Inspection of the rotational potential V(O)

in Figure 1 reveals that the minimum in energy occurs at 0 =_ 200. In this figure, as mentioned

above, 0 = 0 0 corresponds to the equilibrium orientation of the methyl group at temperatures

from 4.2 K to 150 K as determined by the neutron diffraction study. The pair potentials used

in the previous studies give the correct shape for V(0), but the minimum is not located at

0 = 00. Therefore, the pair potentials discussed above cannot be said to well represent the

interactions in the crystal.

An objection can be raised that the mean field-like approximation is inadequate for the

calculation of V(0), especially for large values of 0. The calculations of Cavagnat and Pesquer

(1986) demonstrate the effect of certain limited reorientations of the neighboring methyl

groups on the rotational potential. But certainly near the measured equilibrium orientation

(i.e., 0 = 00), the potential must be a minimum.

It is our goal to formulate an intermolecular potential energy function for nitromethane

which is consistent with the spectroscopic and structural information available. This paper

describes the method and results of this work.

2. POTENTIAL ENERGY SURFACE

All attempts to produce a rotational potential with the shape of that of Figure 1, and with a

minimum at 0 = 00 using Lennard-Jones potential energy functions for all atomic species

failed. We also used the forms of interatomic potential energy functions based on the work of

Caillet and Claverie (1975) and used in the calculations of Cavagnat and Pesquer (1986). We

tried to fit Morse functions, as well as other forms of pair potentials in general use, to attain
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the desired result. Inclusion of electrostatic interactions to these pair potentials made little

difference in the results. None of these potential functions were successful in reproducing

V(O) with a minimum at 00; the shape could be reproduced but only with the minimum shifted

away from 0°. Within certain scaling, all of the aforementioned functions generally have the

same shape. The failure to obtain the minimum of V(8) at 00 suggests to us that the shape of

the pair potential v(r) as a function of the distance must be changed.

Our task is to rewrite Equation 2 in a form which explicitly exhibits all the experimental

information at hand. Reiterating, these include the crystal structure, which defines the

distribution of atoms neighboring the methyl group; the spectroscopic measurements of the

rotational energy levels, which define the shape of V(O); and, again, from the crystal structure,

the equilibrium orientation of the methyl group with respect to its heavy atom frame. This can

be done in the following manner. From the definition of the Dirac delta function, one can write

v(rW)O fv(r)8(r - r,,)dr (4)

so that Equation 2 becomes

V(O) = ,, fv(r) 5( r - r,)dr. (5)

The pair distribution function for the neighbors of hydrogen i is defined as

0 ,( r) - r j 8 ( r - r,,) (6)

from which the desired form of V(O) is obtained as

V(e)=•, f v( r) ,r[e] )dr. (7)

In the preceding equations, we have explicitly assumed one function, 1r), describing a single

type of pair interaction which in the present work is the H-O interaction. It is trivial to extend
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the above arguments to include several different pair potentials, ~(r), which would describe

interactions of the hydrogens to several atomic species. In Equation 7, the factor Oi(r[O])

expresses the geometric constraints defined by the crystal structure and is, of course, a

function of 0.

In practice, Equation 7 is rewritten in an approximate form which allows numerical

calculation of the integral. If we define the pair distribution function for the methyl group

hydrogens as

D (r) = ,(r) (8)

where the sum is over the three hydrogens of the target molecule, then Equation 7 can be

written as:

V(Om) = rin v((r)Z"( r') (9)

where

rn = rmin + (n - 1/2)A r. (10)

The approximation in Equation 9 is that the values of v and 4 at r = rn are taken as constants

over the range of r from rmin + (n-1)Ar to rmin + (n)Ar. The value of rmnn (= 2.4 A) corresponds

to the minimum value of ri which occurs in the problem, namely, the minimum H-O distance

between a hydrogen of the methyl group and the oxygen of a neighboring molecule. The

maximum value of n corresponds to some cutoff in the range of v (= 6.5 A). The value of

Ar (0.075 A) is chosen so as to make the approximation adequate. The superscript m on Z is

included to explicitly indicate that 4D is a function of 8, that is, for each value of 0m, there

corresponds a characteristic distribution function Dm. The value of v for each value of n is

taken as a free parameter removing the restriction on the form of v as function of r. This

problem is not amenable to least squares analyses. Instead, the method of maximum entropy

(Gull and Danniel 1979) is used.
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The method of maximum entropy is a mathematical technique from information theory,

often used in image-reconstruction, by which a "best" distribution of a function, for example

v(rn), is obtained subject to constraints which usually reflect limited experimental knowledge.

In the present case, this knowledge consists of the shape of V(em) and the values of Om(rn)

which are obtained respectively from the spectroscopic and crystallographic studies mentioned

above. The reader is referred to Gull and Danniel (1979) for discussions and examples of this

powerful method. In the present case, the information theory entropy function (so named

because of its functional similarity to the well-known thermodynamic entropy function),

S = v, vIn(vIv°, (11)

is to be maximized subject to the constraint that the parameters vn be consistent with the set

of values of VtOm). This constraint is expressed as the requirement that

m[ V(Gm) - V°(Om)] 2 = 0. (12)

We have labelled in short hand vn as corresponding to Vqrn) in Equation 9 and V0 of

Equation 12 are those values of V corresponding to the set of parameters, vnO. Satisfaction of

these conditions leads to the prescription that a new set of parameters, v., is obtained from a

previous set, vn, by

v,= vexp(EM {10'(n) x [ V(em) - VO(Om)I}J. (13)

The meaning of 1/"(n) is clear from inspection of Equation 9.

In the initial attempt to obtain a satisfactory set of v., a small cluster of nitromethane

molecules consisting of the target molecule and its 18 nearest neighbors was used (denoted
Model I). The molecule geometry is that given in Table 2 of Trevino, Prince, and Hubbard

(1980). The starting set of v used was obtained from Equation 3 and the parameters E and a

given there. Details of the procedure require a choice of the number of values of 0, used to
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describe V and the value of Ar used to enumerate the number of v,. Trial and error resulted

in the use of 60 equally spaced values of 0 from -600 to 600 and Ar = 0.075 A. New sets of v,

were obtained using the procedure of Equation 13 in an iterative manner until a satisfactory

convergence of Equation 12 was obtained. The result of this procedure is shown in Figure 2a.

The solid line denotes the original v(r) from Equation 3 and the dashed line shows the final set

of v(r). The "noise" in the results (the dashed line) is probably due to the approximation to

v in Equation 9. The resulting V(O) satisfied the requirements that the shape be that of

Figure 1 and the minimum of energy be at 0 = 0°. A more useful result for analysis than

Figure 2a is the difference between the original Lennard-Jones potential and the final v(r)

produced by the maximum entropy exercise, shown in Figure 2b (solid line). Although these

results are noisy, the curve suggests that the "true" v(r) should be more attractive than the

original Lennard-Jones potential from 2.6-3.2 A, and should have a "bump" at approximately

3.3 A and perhaps another "bump" at 4.2 A. A function v(r) was, at this point, constructed

which consisted of the original Lennard-Jones potential plus several Gaussian functions, the

sum of which was a result of a least-squares fit to the result of the maximum entropy

calculation. The V(O) obtained from this v(r) using Equation 2 was found to be a rather poor

reproduction of the desired result. We are forced to conclude that the maximum entropy

technique, as used in the present case, produces only a guide to the desired result. When,

however, using the exact expression (Equation 2) and non-linear least-squares fitting to further

adjust the parameters of the Gaussian-corrected Lennard-Jones (GCLJ) potential in order to

produce the desired VKO), we obtained a v(r) shown in Figure 2c (dashed line). The difference

between the resulting GCLJ potential and the original Lennard-Jones potential are shown in

Figure 2b (dashed line). This potential energy function gives exactly the desired V(O) with its

minimum at 00. Note that the GCLJ potential is indeed more attractive than the original

Lennard-Jones potential in the range 2.6-3.1 A, requires a "bump" at approximately 3.5 A but

does not require a "bump" at 4.2 A. The changes suggested by the maximum entropy

procedure were quite accurate.

The nitromethane molecules used in the maximum entropy calculation are not perfectly

symmetric as they are in the gas phase. We do not know the deformation of each molecule

in the crystal as a function of orientation of the methyl group, except at the equilibrium

position. In order to facilitate subsequent Monte Carlo and molecular dynamics simulations,

we made the following assumptions about our crystal model in the next stage of the
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refinement of the potential energy func n. First, we decided to use a perfectly symmetric

molecule to construct the new crystal. Rather than use the raw data from Table 2 of Trevino,

Prince, and Hubbard (1980), we used the thermally corrected internal coordinates given in

Table 3 of this same reference. In that table, the two O-N bond distances and CNO angles

differ slightly. We chose to use the average value of these coordinates in constructing our

new model (Model II, Table 2). The potential shown in Figure 2c suggests that interactions

beyond 6.5 A can be neglected. Therefore, we require the potential energy function to have a

cutoff at 6.5 A. We used a crystal model which was large enough to include all H-0 pairs

within a distance of 6.5 A to the target molecule. Again, a least-squares fitting procedure is

used to obtain the parameters of this potential. The final form of the O-H potential which gave

the desired results using this model is

2
re[ a =) - (a /r)'] + a,,exp( -b.[ r - re,.]2), r< rcu,-&t

n-1

v(r) = I c,[r - (r., + Ar)]', r, - 8r<_r5r, + 8r (14)

1-3

[0.0 r > rc, + 5r

and is shown as a function of H-0 distance in Figure 3. The quintic spline function, the

second expression in Equation 14, was used to make the potential continuous at its cutoff.

The parameters c3, c4, and c5 are determined by requiring that v(r) and its first and second

derivatives be continuous at r = r,, - Sr and r = r,, + Sr. Note that the potential for this crystal

model is very similar in shape to that for Model I (Figure 2c); the well and "bump" are located

in the same positions, 2.6 and 3.5 A, respectively. Figure 4 shows the desired V(O) with the

minimum at 00 (solid line) and the V(O) produced using Equation 14 for the large crystal model

(dashed line). The resulting fit is almost perfect. It is difficult to imagine any procedure other

than the maximum entropy which would have allowed the discovery of the peculiar shape of

v(r) arrived at here. The "bump" at 3.5 A of the H-0 potential appears to be absolutely

necessary in reproducing %10) with the minimum at 00. Parameters for the potential function

shown in Equation 14 are listed in Table 1.
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Table 2. Crystal Models'

Model lb Model 11b Mode' !11c

R(CH) 1.0739 1.0981 1.000

R(CH) 1.0741 1.0981 1.000

R(CH) 1.0734 1.0981 1.000

R(CN) 1.4805 1.4810 1.470

R(ON) 1.2093 1.2160 1.235

R(ON) 1.2228 1.2160 1.235

8(HCH) 111.2170 111.6000 109.171

8(HCH) 111.2061 111.6000 109.171

9HCH) 111.2491 111.6000 109.171

8(CNO) 118.9326 118.3500 119.150

8(CNO) 117.7878 118.3500 119.150

"Bond distances and angles are given in units of A and degrees, respectively.

bTrevino, Prince, and Hubbard (1980).

CCromer, Ryan, and Schiferl (1985).

3. DISCUSSION

It is difficult to speculate on the origin of the various features (especially that at 3.5 A) of

the final H-O potential except to recognize that many effects may be hidden within the

approximation that the H-O interaction is a pairwise additive two-body interaction. Possibly, a

quantum mechanical calculation on a large cluster of nitromethane molecules might shed light

on the origin of such a potential but it is our understanding that such a calculation is not

possible at this time. The only way we can ascertain whether this potential is useful is to

determine whether it reproduces experimental measurements.

The energy levels of a one-dimensional methyl rotor can be calculated (Herschbach 195Q!

for a rotational potential of the form of Equation 1. The measured and calculated energy

levels are given in Table 3. The difference between the calculated levels of Cavagnat et al.
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Table 3. Torsional Energy Levels of Solid Nitromethanes

Isotope Ground State Tunnel Splitting First Excited State Second Excited State
(g.eV) (meV) (meV)

Meas. CaIc. Meas. Calc. Meas. CaIc.

Cavagnatb This Cavagnatk This Cavagnat' This
Workc Workc Workc

CH3NO 2  ?5 34 29.5 6.7 6.9 6.7 17.5 16.7 16.4

CD3NO2  1.7 1.3 1. 5.3 5.2 5.1 10.6 11.4 11.1

a 4.2 K Ambient pressure
b Model I, Cavagnat et al. (1985)
c Model II

( 1 P5) ar 4 'he -resent r-s,!ts are primarily due to the different geometries of the molecules

used in these studies. In Cavagnat et al. (1985), the molecular geometry is that revealed in

the diffraction measurements where here a symmetric molecule (Model I1) is used as

discussed above. However, there is still good agreement with the experimental

measurements at 4.2 K and low pressure for both the protonated and deuterated species.

The crystal structure of nitromethane at room temperature and pressures up to 6 GPa has

been investigated with single crystal X-ray diffraction (Cromer, Ryan, and Schiferl 1985).

Several results of that study which are relevant to the present work are: (1) the space group

under these conditions is the same as that at 4.2 K and ambient pressure; (2) the hydrogen

atom positions were not located at pressures below 3.5 GPa; (3) at 3.5 GPa, the hydrogen

positions were attainable from the measurements, and the methyl group is found to be rotated

about the C-N bond by an angle of 450 relative to the orientation obtained at 4.2 K. The

values of the lattice constants as functions of pressures are given in this work, as well as

internal coordinates of the nitromethane molecule at room temperature. The only data which

give all internal coordinates at ambient temperatures in this work are at 3.5 GPa, assuming

C-H and H-H bond distances of 1.0 and 1.63 A.

These observations should provide a useful test of the pair potential obtained here. The

crystal model used for this purpose (Model Ill) is constructed from the coordinates in Table 3,
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(Cromer, Ryan, and Schiferl 1985) at 3.5 GPa. The values of the internal coordinates used in

this model are listed for convenience in Table 2. The effect of pressure was simulated by

using the lattice constants specific to the pressures reported in Table 1 of Cromer, Ryan, and

Schiferl (1985), shown in Table 4.

The rotational potential, V(e), at each pressure was first calculated with all methyl groups

in the crystal rotating in phase with the target molecule. This was used to obtain the location

of the minimum of V(8) at each pressure and therefore the equilibrium orientation of the

methyl group predicted by v(r). The location of the minimum at each pressure is given in

Table 5. Once this minimum was determined, all surrounding neighbors of the target methyl

group were oriented at this rotation anale 8. The mean field-like approximation was then

applied and the methyl group of the target molecule was rotated while the neighbors remained

fixed. The resulting V(O) at each pressure was calculated and the results are shown in

Figure 5. Cromer et al. (1985) give two sets of crystallographic data for P = 3.5 GPa, which

are labelled as XTL1 and XTL2. Note that the calculated minima of the rotational potentials

for XTL1 and XTL2 are 450 and 470 from the orientation of the methyl group at 4.2 K (ambient

pressures), in excellent agreement with the reported structures at 3.5 GPa (Cromer, Ryan,

and Schiferl 1985).

Cromer et al. (1985) also suggest that at pressures below 0.6 GPa, the methyl groups in

the crystal are rotating freely at room temperature. At intermediate pressures, the methyl

group is slightly hindered and, at 3.5 GPa, the methyl group is fixed in place. Without

dynamics calculations, we cannot conclusively state whether our model O-H potential function

will verify these findings. We think it useful, however, to examine the energy difference of the

maximum and minimum (the classical barrier height) of the calculated VK8) at each pressure.

Figure 6 shows the calculated barrier heights from 0.3 to 3.5 GPa (denoted by filled circles).

The dashed line corresponds to room temperature. The barrier heights for pressures greater

than 3.5 GPa were omitted from this figure because the large magnitudes (4.1, 7.1, and

26.3 eV for 4.0, 5.45, and 6.0 GPa, respectively) obscure the details of the figure in the low

pressure region. At pressures up to 2.0 GPa, the classical barrier heights are near room

temperature, suggesting that at these pressures the methyl group is indeed a free rotor (or

perhaps only slightly hindered). At 3.5 GPa, the classical barrier height is almost 0.45 eV,

well above room temperature. Clearly, at this pressure the methyl group is unable to traverse

12



Table 4. Crystallographic Data for Nitromethane at Various Pressuresa

0.3 0.33 0.6 1.0 2.0 3.5b 3.5c 4.0 5.45 6.0

a (A) 5.182 5.192 5.140 5.090 4.994 4.890 4.884 4.817 4.769 4.730

b (A) 6.259 6.278 6.191 6.115 5.994 5.885 5.878 5.791 5.777 5.720

c (A) 8.645 8.675 8.553 8.464 8.272 8.099 8.116 8.039 7.958 7.933

a Cromer, Ryan, and Schiferl (1985)
b XT1
c XTL2

Table 5. Location of Calculated Minimae of V(9) at Various Pressuresb

P(GPa) 6 (Degrees)

0.30 -10.0

0.33 -11.0

0.60 - 7.0

1.00 60.0

2.00 -12.0

3.50 XTL1 -45.0

3.50 XTL2 -47.0

4.00 -55.0

5.45 -52.0

6.00 -54.0

'Relative to orientation of methyl group at 4.2 K, 1 -bar measurements (Trevino, Prince, and Hubbard 1980)
b Model III
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the torsional barrier and fully rotate, in agreement with experiment (Cromer, Ryan, and

Schiferl 1985).

These calculations of V(O) as a function of pressure reveal an additional experimental

opportunity. At room temperature, the calculated shape of V(O) changes drastically for

pressures between 0.3 and 2 GPa (Figure 5). These changes are very sensitive to the form

of v(r) as revealed by comparisons between the results presented in Figure 5 and those

produced with the Lennard-Jones potential of Equation 6. The mass distribution of deuterium

nuclei under these conditions of temperature and pressure should be related to the shape of

V(O). This mass distribution should be measurable with neutron diffraction and such

measurements are planned in the near future.

The success we have had in reproducing several experimental observations using the

O-H potential energy function obtained by the maximum entropy exercise has greatly

enhanced our confidence in this potential. The intermolecular field which defines the crystal of

nitromethane most probably includes at a minimum additional interactions between the

hydrogen atoms and atomic species other than the oxygen atoms. An effort is presently

underway to determine these with criteria similar to those used in the present work. We also

intend to incorporate intramolecular terms in order to carry out fully-dimensional molecular

dynamics calculations. In addition, the phase diagram as a function of pressure and

temperature will be investigated with Monte Carlo calculations in a search for interesting but

as yet unknown phenomena. We proceed with some confidence that a major part of the

problem is well in hand.
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Figure 1. The Rotational Potential as a Function of Methyl Rotation With Parameters
Corresponding to 1 Bar (See Equation 1). The Positions of the Average of
Each Tunnel Split Energy Level are Shown for CH.,NO, (solid lines) and
CD3NO,(dashed lines).
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Figure 2. (a) Lennard-Jones H-O Interaction Potential Used in Cavagnat et al. (1985) (Solid
Line) and H-O v(R) Predicted From Maximum Entropy Exercise (Dashed Line);
(b) Difference Between Lennard-Jones H-0 Potential Used in Cavagnat et al.
(1985); and H-0 v(r) Predicted From Maximum Entropy Exercise (Solid Line) and
GCU H-C Potential (Dashed Line); (c) Lennard-Jones H-0 Interaction Potential
Used in Cavagnat et al. (1985) (Solid Line) and GCU H-0 Potential (Dashed
Line).
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Figure 3. Potential Energy (Equation 14) as a Function of O-H Internuclear Distance.
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Figure 4. Rotational Potential as a Function of Methyl Rotation. The Solid Curve is
Generated by Equation 1 (and Shifted by Approximately 200) and the Dashed
Curve is Generated by All O-H Interactions in Model II Using Internuclear
Potential Described in Equation 14.
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Figure 5. Rotational Potential as a Function of Methyl Rotation at (a) 0.3 GPa, (b) 0.33 GPa,
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